Introduction

In this article, we’ll explore how to build a Q&A chatbot using LangChain, OpenAI, and Gradio. We’ll cover:

  • Setting up the environment
  • Creating a simple chatbot
  • Debugging common errors
  • Transitioning from Streamlit to Gradio

This guide is based on real troubleshooting steps, making it ideal for beginners and intermediate learners.


1. Understanding the Goal

We want to build a chatbot that:
✅ Takes user questions
✅ Sends them to OpenAI’s GPT-3.5-turbo
✅ Returns AI-generated answers

Tools Used

  • LangChain (for AI workflow)
  • OpenAI (for the LLM)
  • Gradio (for the web interface)
  • Python (for scripting)

2. Initial Setup & Common Errors

A. Installing Dependencies

First, install the required libraries:

pip install langchain-community gradio python-dotenv openai

B. Setting Up OpenAI API Key

Create a .env file:

OPENAI_API_KEY=your_api_key_here


Load it in Python:

from dotenv import load_dotenv  
load_dotenv()  

C. Choosing the Right Model

⚠️ Common Mistake: Using OpenAI() instead of ChatOpenAI() for GPT-3.5-turbo.

Correct Approach:

from langchain_community.chat_models import ChatOpenAI  

llm = ChatOpenAI(
    model="gpt-3.5-turbo",
    temperature=0.5,
    openai_api_key=os.getenv("OPENAI_API_KEY")
)

3. Building the Chatbot

A. Simple Q&A Function

def get_response(question):
    response = llm([HumanMessage(content=question)])
    return response.content

B. Creating a Web Interface

Option 1: Using Streamlit (Simple but Limited)

import streamlit as st  

st.text_input("Ask a question", key="question")
if st.button("Submit"):
    st.write(get_response(st.session_state.question))

Option 2: Using Gradio (More Flexible & Interactive)

import gradio as gr  

def respond(question):
    return get_response(question)  

gr.Interface(
    fn=respond,
    inputs=gr.Textbox(label="Ask anything"),
    outputs=gr.Textbox(label="AI Response")
).launch()

Why Gradio is Better?

  • Supports chat history
  • Easier to customize UI
  • Built-in API endpoints

4. Debugging Common Issues

ErrorSolution
ModuleNotFoundErrorpip install missing_package
OPENAI_API_KEY not foundCheck .env file
Streamlit not workingRun with streamlit run app.py
Gradio not launchingUse app.launch(server_port=7861) if port is busy

5. Key Learnings

A. LangChain Basics

  • Use ChatOpenAI for chat models (GPT-3.5, GPT-4)
  • HumanMessage for user inputs
  • load_dotenv() for secure API key management

B. Gradio vs. Streamlit

FeatureGradioStreamlit
UI Customization✅ High❌ Limited
Chat Support✅ Yes❌ No
Deployment✅ Easy✅ Easy
Real-time Updates✅ Yes❌ No

C. Best Practices

Always handle API errors
Use environment variables for API keys
Test models separately before UI integration


6. Final Working Code (Gradio Version)

import gradio as gr
from langchain_community.chat_models import ChatOpenAI
from langchain_core.messages import HumanMessage
from dotenv import load_dotenv
import os

load_dotenv()

llm = ChatOpenAI(
    model="gpt-3.5-turbo",
    temperature=0.5,
    openai_api_key=os.getenv("OPENAI_API_KEY")
)

def respond(question):
    response = llm([HumanMessage(content=question)])
    return response.content

gr.Interface(
    fn=respond,
    inputs=gr.Textbox(label="Ask anything"),
    outputs=gr.Textbox(label="AI Response"),
    title="AI Chatbot"
).launch()

7. Conclusion & Next Steps

✅ Built a functional AI chatbot
✅ Learned LangChain + OpenAI integration
✅ Compared Gradio vs. Streamlit

Next Steps:
➡ Add chat memory (for multi-turn conversations)
➡ Deploy on Hugging Face Spaces
➡ Experiment with other LLMs (Llama 3, Claude, etc.)


Final Thoughts

This journey covered real-world debugging, best practices, and UI choices. Whether you’re a beginner or an experienced developer, these concepts will help in building better AI applications.

🔗 Try it yourself and share your results! 🚀

Leave a Reply

Your email address will not be published. Required fields are marked *